Dear Editor,

The present and future in any field rely mainly on the strong fundamentals of the past. The best example of this is Rosalind Elsie Franklin, popularly known as the “Dark Lady of DNA” as she remained the most controversial female in the field of science. She was also known as the unsung hero of DNA because she was not promptly recognised for her contribution to the discovery of DNA [1]. The image “Photograph 51,” depicting the double helical structure of DNA using X-ray crystallography experiments, was a crucial finding in the discovery of the genetic structure [2]. She serves as the best role model for budding scientists, and the authors have portrayed her on the agar plate as a tribute to her priceless contribution, which has formed the basis of modern diagnostic microbiology [3].

The artwork depicted in [Table/Fig-1] was created using HiCrome UTI agar (chromogenic) medium as the base. Chromogenic media are non-selective media that contain essential ingredients to support the growth of most bacterial pathogens. Chromogenic media also contain tryptophan deaminase, which inhibits swarming and aids in the detection of Proteus species [4]. Studies have advocated the sensitivity and specificity of chromogenic media in identifying pathogens from clinical samples, thereby reducing turnaround time in processing [5]. The media was prepared according to the manufacturer’s instructions. A marker pen was used to draw the art behind the petri dish. The bacterial isolates used for streaking were Escherichia coli ATCC 25922, Enterococcus faecalis ATCC 29212, and Proteus mirabilis ATCC 12453, which produced purple, green, and brown colours, respectively, following overnight incubation at 37°C for 18-24 hours.

Chromogenic media is one of the most economical methods for the rapid and accurate identification of common bacteria encountered. Additionally, appropriate chromogenic media can be used to rapidly screen antibiotic-resistant bacteria. Through art, authors would like microbiologists to utilise this beautiful technology for early patient care. The agar art photographic image was submitted to the American Society for Microbiology (ASM) agar art contest 2022, conducted by ASM under the theme “Your Favorite Microbiologist.” It won first place in the “Asia” section under the Professional category among 200 submissions by ASM in November 2022 [6].

Acknowledgement

The authors would like to acknowledge Dr. B. Appalaraju, Professor and Head, Department of Microbiology, PSGIMS&R, for providing the platform to execute their ideas.

REFERENCES


Keywords: American society of microbiology, Agar art, Rosalind elsie franklin, Deoxyribonucleic acid

When Art Meets Science: Chromogenic Media- A Revolutionary Tool in Diagnostic Microbiology

M MOHAMADIYA RIZWANA, S SHANMUGA PRIYA

Keywords: American society of microbiology, Agar art, Rosalind elsie franklin, Deoxyribonucleic acid

When Art Meets Science: Chromogenic Media- A Revolutionary Tool in Diagnostic Microbiology

M MOHAMADIYA RIZWANA, S SHANMUGA PRIYA

Keywords: American society of microbiology, Agar art, Rosalind elsie franklin, Deoxyribonucleic acid

When Art Meets Science: Chromogenic Media- A Revolutionary Tool in Diagnostic Microbiology

M MOHAMADIYA RIZWANA, S SHANMUGA PRIYA

Keywords: American society of microbiology, Agar art, Rosalind elsie franklin, Deoxyribonucleic acid

When Art Meets Science: Chromogenic Media- A Revolutionary Tool in Diagnostic Microbiology

M MOHAMADIYA RIZWANA, S SHANMUGA PRIYA

Keywords: American society of microbiology, Agar art, Rosalind elsie franklin, Deoxyribonucleic acid